Multi-Agent Reinforcement learning Approach to IoT Coordination

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Agent Reinforcement Learning

This thesis presents a novel approach to provide adaptive mechanisms to detect and categorise Flooding-Base DoS (FBDoS) and Flooding-Base DDoS (FBDDoS) attacks. These attacks are generally based on a flood of packets with the intention of overfilling key resources of the target, and today the attacks have the capability to disrupt networks of almost any size. To address this problem we propose ...

متن کامل

Multi-Agent Deep Reinforcement Learning

This work introduces a novel approach for solving reinforcement learning problems in multi-agent settings. We propose a state reformulation of multi-agent problems in R that allows the system state to be represented in an image-like fashion. We then apply deep reinforcement learning techniques with a convolution neural network as the Q-value function approximator to learn distributed multi-agen...

متن کامل

Multi-agent Relational Reinforcement Learning

In this paper we study Relational Reinforcement Learning in a multi-agent setting. There is growing evidence in the Reinforcement Learning research community that a relational representation of the state space has many benefits over a propositional one. Complex tasks as planning or information retrieval on the web can be represented more naturally in relational form. Yet, this relational struct...

متن کامل

Solving Homogeneous Reinforcement Learning Problems with a Multi-Agent Approach

In this paper we examine reinforcement learning problems which consist of a set of homogeneous entities. These problems tend to have extremely large state spaces making standard approaches unattractive. We study lane change selection in a car traffic control problem as an example of such a problem. We show how a single agent problem can be translated into an approximating multi-agent problem. W...

متن کامل

Learning to Communicate with Deep Multi-Agent Reinforcement Learning

We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order to share information that is needed to solve the tasks. By embracing deep neural networks, we are able to demonstrate endto-end learning of protocols in complex environments inspired by communica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1743/1/012008